• 文献标题:   Nanoconfined vanadium nitride in 3D porous reduced graphene oxide microspheres as high-capacity cathode for aqueous zinc-ion batteries
  • 文献类型:   Article
  • 作  者:   PARK JS, WANG SE, JUNG DS, LEE JK, KANG YC
  • 作者关键词:   vanadium nitride, graphene oxide, cathode material, spray pyrolysi, zincion batterie
  • 出版物名称:   CHEMICAL ENGINEERING JOURNAL
  • ISSN:   1385-8947 EI 1873-3212
  • 通讯作者地址:  
  • 被引频次:   14
  • DOI:   10.1016/j.cej.2022.137266 EA MAY 2022
  • 出版年:   2022

▎ 摘  要

Aqueous zinc-ion batteries (ZIBs) are receiving considerable research highlights owing to their high safety and environment-friendliness. To implement this promising technology for grid-scale energy storage, effective cathode materials with high capacity, cycle stability, and electrochemical kinetics should be developed. Herein, the synthesis of uniquely structured porous VN-reduced graphene oxide composite (VN-rGO) microspheres through a facile spray pyrolysis process and their application as cathodes for ZIBs are introduced. The electro-chemical reaction mechanism of VN-rGO microspheres with zinc ions is investigated through various in situ and ex situ analyses. During the initial charge process, VN phase transforms into the Zn-3(OH)(2)V2O7.2H(2)O (ZVOH) phase. From the second cycle and on, the ZVOH phase undergoes zinc-ion ingress and egress processes. VN-rGO microspheres exhibit an unprecedented high capacity (809 mA h g(-1) at 0.1 A g-1), high energy density (613 W h kg(-1)), and good rate capability (467 mA h g(-1) at 2.0 A g(-1)). The cathode delivers a reversible capacity of 445 mA h g(-1) after 400 cycles at 1.0 A g(-1), which ascertains the robustness of the structure. The 3D porous rGO matrix to which VN nanocrystals are homogenously anchored accelerates the zinc-ion storage kinetics and en-dows the cathode with structural robustness.