• 文献标题:   Reduced graphene oxide supported FePt alloy nanoparticles with high electrocatalytic performance for methanol oxidation
  • 文献类型:   Article
  • 作  者:   JI ZY, ZHU GX, SHEN XP, ZHOU H, WU CM, WANG M
  • 作者关键词:  
  • 出版物名称:   NEW JOURNAL OF CHEMISTRY
  • ISSN:   1144-0546 EI 1369-9261
  • 通讯作者地址:   Jiangsu Univ
  • 被引频次:   87
  • DOI:   10.1039/c2nj40133a
  • 出版年:   2012

▎ 摘  要

Pt-based materials have been widely used as electrocatalysts in direct methanol fuel cells (DMFCs) due to their significant activity for methanol oxidation as well as their superior poison tolerance. In this study, a reduced graphene oxide (RGO) supported FePt alloy electrocatalyst is successfully synthesized by a facile in situ co-reduction route. The microstructure, composition and morphology of the synthesized materials are systematically investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, energy dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). It is shown that the as-formed FePt nanoparticles with a size of 4 nm are well spread out on the RGO sheets and as a result, re-stacking of the RGO sheets is effectively inhibited. Their catalytic performance for electrocatalytic oxidation of methanol is investigated by cyclic voltammetry and amperometric method, which indicate that the RGO/FePt catalyst exhibits much higher catalytic activity and stability than the RGO/Pt nanocomposites. It is proposed that the addition of Fe, which increases the number of Pt active sites, is responsible for the improved catalytic performance. This result implies that the prepared RGO/FePt nanocomposites have great potential applications in DMFC.