• 文献标题:   Graphene Film for Supercapacitors: Preparation, Foundational Unit Structure and Surface Regulation
  • 文献类型:   Review
  • 作  者:   JIANG MH, SHENG LZ, WANG C, JIANG LL, FAN ZJ
  • 作者关键词:   graphene film, supercapacitor, preparation method, structural regulation, surface modification
  • 出版物名称:   ACTA PHYSICOCHIMICA SINICA
  • ISSN:   1000-6818
  • 通讯作者地址:  
  • 被引频次:   8
  • DOI:   10.3866/PKU.WHXB202012085
  • 出版年:   2022

▎ 摘  要

With the rapid development of the functional applications of portable and wearable electronic products (such as curved smartphones, smartwatches, laptops, and electronic skins), there is an urgent need to fabricate flexible, lightweight, and highly efficient energy storage devices that can provide sufficient power support. Flexible supercapacitors with high power density, high charging/discharging rates, wide operating temperature ranges, low maintenance consumption, and a long cycling lifespan can be integrated with smart wearable electronic products to provide power support. The conventional preparation method for the electrodes of flexible supercapacitors involves directly coating the active materials on flexible substrates. However, inactive materials such as the substrates and binders occupy a large volume and contribute notably to the weight of flexible electrodes, which is unsuitable for highly integrated flexible electronic devices. Owing to its unique characteristics, including large theoretical specific surface area, high electrical conductivity, excellent mechanical flexibility, good chemical stability, and ease of film processing, graphene has been widely used as an electrode material for flexible supercapacitors. The graphene film is a macrostructure with graphene nanosheets as the main structural units. As opposed to conventional flexible electrodes containing non-electrochemical active components such as collectors, conductive agents, and binders, graphene film electrodes are considered highly promising electrode materials for flexible supercapacitors because of their light weight and robust mechanical properties. However, the inevitable aggregation of graphene during electrode preparation creates "dead volume" in the film electrodes, where the electrolyte cannot reach, further limiting the specific capacitance. In this review, we review the recent research on graphene films used for flexible supercapacitors, with emphasis on the assembling methods for graphene films, regulation of the graphene units, and their electrochemical performance. First, simple preparation methods for graphene films are introduced: vacuum-assisted selfassembly, blade coating, pressing aerogel, wet spinning, and interfacial self-assembly. Second, two major strategies for structural control and surface modification of the graphene units are described in detail: (1) structural control can transform the two-dimensional graphene nanosheets into defect graphene, which not only weakens the van der Waals force and pi-pi bond interactions between the nanosheets, but also leads to the formation of three-dimensional conductive networks and ion transport channels during the assembly process; (2) surface modification, which can suppress the agglomeration of graphene nanosheets by introducing heteroatoms and reactive functional group molecules, while improving their electrical conductivity and wettability, and introducing pseudocapacitance. Finally, the persisting challenges and future development of the commercial applications of graphene films are discussed.