▎ 摘 要
Graphene-based materials have received worldwide attention in the focus of forefront energy storage investigations. Currently, the design of novel three-dimensional (3D) graphene structures with high energy capability, superior electron and ion conductivity, and robust mechanical flexibility is still a great challenge. Herein, we have successfully demonstrated a novel approach to fabricate 3D assembled graphene through the supramolecular interactions of beta-cyclodextrin polymers (beta-CDP) with an adamantine end-capped poly(ethylene oxide) polymer linker (PEG-AD). The incorporation of PEG-AD linker into rGO sheets increased the interlayer spacing of rGO sheets to form 3D graphene materials, which can provide efficient 3D electron transfer pathways and ion diffusion channels, and facilitate the infiltration of gel electrolyte. The as-prepared 3D self-assembled graphene materials exhibit significantly improved electrochemical performances of supercapacitor in terms of high specific capacitance, remarkable rate capability, and excellent cycling stability compared to pristine reduced graphene oxide. This study shed new lights to the construction of three dimensional self-assembled graphene materials and their urgent applications in energy storage. (C) 2016 Elsevier B. V. All rights reserved.