▎ 摘 要
In this study, a fluorescence detection strategy is reported for the peptidase activity assay, which is based on fluorescence resonance energy transfer (FRET) from a fluorophore-labelled peptide to graphene oxide (GO). By the hydrolysis of the peptide, the fluorophore-labelled peptide releases the fluorophore 5-carboxyfluorescein, which can avoid quenching from GO. Thus, the increased intensity of the obtained fluorescence signal in the assay is directly dependent on the peptidase activity. As a model case of the developed strategy, the activity determination of pancreatic elastase (PE) is performed. Under the optimal experimental conditions at an excitation wavelength of 494 nm, the activity of PE can be determined in the range from 0.003 to 0.10 U/mL, with a detection limit of 0.001 U/mL at the emission wavelength of 518 nm. This is ultra-sensitive for the determination of PE. The specificity of the method is demonstrated by the analysis of PE under complex conditions using fetal bovine serum as the substrate. Hence, the developed method might provide an intrinsically convenient, sensitive platform for the PE activity assay and related biochemical studies due to its homogeneous, and fluorescence-based detection strategy.