• 文献标题:   Graphene-based hybrid nanoparticle of doxorubicin for cancer chemotherapy
  • 文献类型:   Article
  • 作  者:   SREEHARSHA N, MAHESHWARI R, ALDHUBIAB BE, TEKADE M, SHARMA MC, VENUGOPALA KN, TEKADE RK, ALZAHRANI AM
  • 作者关键词:   graphene, photothermal, chitosan, hybrid nanoparticle, hnp, prostate cancer
  • 出版物名称:   INTERNATIONAL JOURNAL OF NANOMEDICINE
  • ISSN:   1178-2013
  • 通讯作者地址:   King Faisal Univ
  • 被引频次:   8
  • DOI:   10.2147/IJN.S211224
  • 出版年:   2019

▎ 摘  要

Background: Prostate cancer (PC) has the highest prevalence in men and accounts for a high rate of neoplasia-related death. Doxorubicin (DOX) is one of the most widely used antineoplastic drugs for prostate cancer among others. However, it has low specificity and many side effects and affects normal cells. More recently, there have been newly developed drug delivery tools which are graphene or graphene-based, used to increase the specificity of the delivered drug molecules. The graphene derivatives possess both n-n stacking and increased hydrophobicity, factors that increase the likelihood of drug delivery. Despite this, the hydrophilicity of graphene remains problematic, as it induced problems with stability. For this reason, the use of a chitosan coating remains one way to modify the surface features of graphene. Method: In this investigation, a hybrid nanoparticle that consisted of a DOX-loaded reduced graphene oxide that is stabilized with chitosan (rGOD-HNP) was developed. Result: The newly developed rGOD-HNP demonstrated high biocompatibility and efficiency in entrapping DOX (similar to 65%) and releasing it in a controlled manner (similar to 50% release in 48 h). Furthermore, it was also demonstrated that rGOD-HNP can intracellularly deliver DOX and more specifically in PC-3 prostate cancer cells. Conclusion: This delivery tool offers a feasible and viable method to deliver DOX photo-thermally in the treatment of prostate cancer.