• 文献标题:   A crack-based nickel@graphene-wrapped polyurethane sponge ternary hybrid obtained by electrodeposition for highly sensitive wearable strain sensors
  • 文献类型:   Article
  • 作  者:   HAN F, LI JH, ZHAO SF, ZHANG Y, HUANG WP, ZHANG GP, SUN R, WONG CP
  • 作者关键词:  
  • 出版物名称:   JOURNAL OF MATERIALS CHEMISTRY C
  • ISSN:   2050-7526 EI 2050-7534
  • 通讯作者地址:   Chinese Acad Sci
  • 被引频次:   19
  • DOI:   10.1039/c7tc03636a
  • 出版年:   2017

▎ 摘  要

Stretchable strain sensors, as crucial components in wearable intelligent devices, have become one of the recent research hotspots with promising potential in human-interactive, personal health monitoring, and flexible smartphones. Graphene-based materials have been reported for high-performance strain sensors. However, there still remain some limitations such as their high production cost and low sensitivity and stretchability. Herein, a highly stretchable and ultra-sensitive strain sensor based on nickel nanoparticles and a graphene-coated polyurethane sponge (Ni@GPUS) ternary hybrid material has been reported. Herein, Ni@GPUS was fabricated via a series of techniques including preparation of a graphene-coated polyurethane sponge, electrodeposition of nickel nanoparticles, and encapsulation by polydimethylsiloxane. The obtained sensors can be stretched up to 65% and exhibit a remarkable gauge factor of up to 3360.09. Furthermore, a fast signal response (<100 ms) and 1000 cycles of stretching and bending prove the rapid steady state response and long-term durability of the sensor, respectively. In addition, the working mechanisms of the sensor have been proposed. Moreover, the strain sensor was used as a bodily motion sensor to monitor finger bending and facial muscle tension, showing great potential in the fields of flexible, stretchable, and wearable electronics.