• 文献标题:   Graphene-Based Nanofluids: Production Parameter Effects on Thermophysical Properties and Dispersion Stability
  • 文献类型:   Article
  • 作  者:   ALI N
  • 作者关键词:   density, graphene, specific heat capacity, suspension thermal conductivity, viscosity
  • 出版物名称:   NANOMATERIALS
  • ISSN:  
  • 通讯作者地址:  
  • 被引频次:   7
  • DOI:   10.3390/nano12030357
  • 出版年:   2022

▎ 摘  要

In this study, the thermophysical properties and dispersion stability of graphene-based nanofluids were investigated. This was conducted to determine the influence of fabrication temperature, nanomaterial concentration, and surfactant ratio on the suspension effective properties and stability condition. First, the nanopowder was characterized in terms of crystalline structure and size, morphology, and elemental content. Next, the suspensions were produced at 10 degrees C to 70 degrees C using different concentrations of surfactants and nanomaterials. Then, the thermophysical properties and physical stability of the nanofluids were determined. The density of the prepared nanofluids was found to be higher than their base fluid, but this property showed a decrease with the increase in fabrication temperature. Moreover, the specific heat capacity showed very high sensitivity toward the graphene and surfactant concentrations, where 28.12% reduction in the property was achieved. Furthermore, the preparation temperature was shown to be the primary parameter that effects the nanofluid viscosity and thermal conductivity, causing a maximum reduction of ~4.9% in viscosity and ~125.72% increase in thermal conductivity. As for the surfactant, using low concentration demonstrated a short-term stabilization capability, whereas a 1:1 weight ratio of graphene to surfactant and higher caused the dispersion to be physically stable for 45 consecutive days. The findings of this work are believed to be beneficial for further research investigations on thermal applications of moderate temperatures.