• 文献标题:   Origin of optical bandgap fluctuations in graphene oxide
  • 文献类型:   Article
  • 作  者:   DE LIMA AH, TAVARES CT, DA CUNHA CCS, VICENTINI NC, CARVALHO GR, FRAGNEAUD B, MACIEL IO, LEGNANI C, QUIRINO WG, DE OLIVEIRA LFC, SATO F, DE MENDONCA JPA
  • 作者关键词:  
  • 出版物名称:   EUROPEAN PHYSICAL JOURNAL B
  • ISSN:   1434-6028 EI 1434-6036
  • 通讯作者地址:   Univ Fed Juiz de Fora
  • 被引频次:   2
  • DOI:   10.1140/epjb/e2020-100578-7
  • 出版年:   2020

▎ 摘  要

In this work, we explore the electrical, optical and spectroscopic properties of different Graphene Oxide (GO) samples focusing on new oxidative strategies to tune their physicochemical properties. Three types of GO samples were prepared by changing the oxidative conditions resulting in carbonyl-, epoxy-or hydroxyl-rich GO. These materials were characterized by UV-VIS absorption, Raman spectroscopy and Xray diffraction. The experimental results indicate that all samples exhibit oxidation and exfoliation degrees typical of graphene oxides obtained by using the modified Hummers' method. The optical bandgap values were measured using the Tauc's plot from UV-VIS data and showed that the stoichiometry of GO impacts the width of the bandgap. The carbonyl-rich sample presented the lowest gap around 3.20 +/- 0.02 eV, while epoxy- and hydroxyl-rich GOs showed out gaps of about 3.48 +/- 0.07 and 3.72 +/- 0.05 eV, respectively. These experimental results are consistent with theoretical calculations of bandgaps obtained with coronene and circumcoronene GO models. The calculations were obtained using different theoretical approaches, such as: Huckel, PM3, AM1 and DFT. The present work suggests that a precise tuning of the optical bandgap of GOs can be achieved by only changing their stoichiometry thus allowing their use in a large range of electronic applications.