• 文献标题:   Flexible all-solid-state asymmetric supercapacitor based on transition metal oxide nanorods/reduced graphene oxide hybrid fibers with high energy density
  • 文献类型:   Article
  • 作  者:   MA WJ, CHEN SH, YANG SY, CHEN WP, WENG W, CHENG YH, ZHU MF
  • 作者关键词:  
  • 出版物名称:   CARBON
  • ISSN:   0008-6223 EI 1873-3891
  • 通讯作者地址:   Donghua Univ
  • 被引频次:   93
  • DOI:   10.1016/j.carbon.2016.11.051
  • 出版年:   2017

▎ 摘  要

Fiber-shaped flexible supercapacitors have attracted considerable attention in recent years due to their potential application in wearable electronics. However, the limited energy density is still a serious bottleneck which restricts their practical application. In this work, transition metal oxide nanorods/reduced graphene oxide (rGO) hybrid fibers were prepared by a facile, scalable wet-spinning method. Due to the synergetic effects between transition metal oxide nanorods and rGO, the electrochemical performance of the hybrid fibers were greatly improved. An all-solid-state asymmetric supercapacitor was constructed by using MnO2 nanorodsirGO hybrid fiber as positive electrode, MoO3 nanorodsirGO hybrid fiber as negative electrode and H3PO4/poly(vinyl alcohol) (PVA) as electrolyte. Based on the different working potential window between MnO2 and MoO3, the optimized asymmetric supercapacitor can be cycled reversibly at a high voltage of 1.6 V and deliver a superior volumetric energy density of 18.2 mWh cm(-3) at a power density of 76.4 mW cm(-3). Besides, the asymmetric supercapacitor exhibits remarkable cycling stability and excellent flexibility and mechanical stability. (C) 2016 Elsevier Ltd. All rights reserved.