▎ 摘 要
An aqueous dispersion of reduced graphene oxide (rGO) has been successfully prepared via chemical reduction of graphene oxide (GO) by hydrazine hydrate in the presence of aniline for the first time. The noncovalent functionalization of rGO by aniline leads to a rGO dispersion that can be very stable for several months without the observation of any floating or precipitated particles. Several analytical techniques including Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) have been used to characterize the resulting rGO. Taking advantages of the fact reducing ability of aniline toward AgNO3, we further demonstrated the subsequent decoration of rGO with Ag nanoparticles (AgNPs) by in situ chemical reduction of silver salts. It was found that such AgNP/rGO nanocomposites exhibit good catalytic activity toward the reduction of hydrogen peroxide (H2O2), leading to an enzymeless sensor with a fast amperometric response time of less than 2 s. The linear detection range is estimated to be from 100 mu M to 80 mM (r = 0.9991), and the detection limit is estimated to be 7.1 mu M at a signal-to-noise ratio of 3. (C) 2011 Elsevier Inc. All rights reserved.