• 文献标题:   Milling Processes and Hydrogen Storage Properties of Mg-Graphene Composites
  • 文献类型:   Article
  • 作  者:   KWAK YJ, CHOI E, SONG MY
  • 作者关键词:   hydrogen storage material, milling in hydrogen, hydrogen uptake release rate, microstructure, grapheneadded mg alloy
  • 出版物名称:   MATERIALS SCIENCEMEDZIAGOTYRA
  • ISSN:   1392-1320 EI 2029-7289
  • 通讯作者地址:   Chonbuk Natl Univ
  • 被引频次:   0
  • DOI:   10.5755/j01.ms.25.3.20567
  • 出版年:   2019

▎ 摘  要

Graphene was chosen as an additive to improve the hydrogen uptake and release properties of magnesium (Mg). Five weight percent of graphene was added to Mg or pre-milled Mg by milling in hydrogen (reactive milling). The milling processes and hydrogen uptake and release properties of the graphene-added Mg were investigated. Adding graphene to Mg and then milling the mixture of Mg and graphene in hydrogen for 6 h [named M5G (6 h)] had little effects on the improvement of hydrogen uptake and release properties of Mg. Pre-milling of Mg (for 24 h) and then adding 5 wt.% of graphene by milling in hydrogen (for 30 min) (named M5G) significantly increased the hydrogen uptake and release rates and the quantities of hydrogen absorbed and released for 60 min of Mg. The activation of M5G was completed after cycle number, CN, of two (CN = 2). M5G had a high effective hydrogen-storage capacity of 6.21 wt.% at 623 K in 12 bar H-2 at CN = 3. M5G released 0.25 wt.% hydrogen for 2.5 min and 5.28 wt.% hydrogen for 60 min H-2 in 1.0 bar H-2 at 623 K at CN = 3. Pre-milling of Mg and then adding graphene by milling in hydrogen and hydrogen uptake-release cycling are believed to create defects, produce cracks and clean surfaces, and decrease particle sizes.