• 文献标题:   Effect of nanostructure on the supercapacitor performance of activated carbon xerogels obtained from hydrothermally carbonized glucose-graphene oxide hybrids
  • 文献类型:   Article
  • 作  者:   ENTERRIA M, MARTINJIMENO FJ, SUAREZGARCIA F, PAREDES JI, PEREIRA MFR, MARTINS JI, MARTINEZALONSO A, TASCON JMD, FIGUEIREDO JL
  • 作者关键词:  
  • 出版物名称:   CARBON
  • ISSN:   0008-6223 EI 1873-3891
  • 通讯作者地址:   Univ Porto
  • 被引频次:   40
  • DOI:   10.1016/j.carbon.2016.04.071
  • 出版年:   2016

▎ 摘  要

Activated carbon xerogels with a cellular morphology were obtained from hydrothermally carbonized glucose-graphene oxide (GO) hybrids and tested as supercapacitor electrodes. The effect of the chemical activation (using KOH) on the nanometer-scale morphology, local structure, porous texture and surface chemistry of the resulting carbon materials was investigated and correlated with their electrochemical behaviour. The electrochemical performance of the activated xerogels was studied in a three-electrode cell using 1 M H2SO4 as the electrolyte. The results underlined the relevant role played by the xerogel nanomorphology; more specifically, xerogels with cellular structures exhibiting well-connected, continuous and very thin (similar to 5-15 nm) carbon walls (prepared with lower amounts of activating agent) favored ionic diffusion and electronic conduction compared to materials with broken, thicker walls (obtained from higher amounts of activating agent). The effect of nanomorphology and local structure was also made apparent when the xerogels were used as actual supercapacitor electrodes. Particularly, a symmetric capacitor assembled from a carbon xerogel with very thin walls and relatively high graphitic character delivered a much higher specific capacitance than that of a commercial activated carbon (223 vs 153 F g(-1) at 100 mA g(-1)) as well as a significantly improved retention of capacitance at high current densities. (C) 2016 Elsevier Ltd. All rights reserved.