▎ 摘 要
A single-crystal sheet of graphene is synthesized on the low-symmetry substrate Ir(110) by thermal decomposition of C2H4 at 1500 K. Using scanning tunneling microscopy, low-energy electron diffraction, angle-resolved photoemission spectroscopy, and ab initio density functional theory, the structure and electronic properties of the adsorbed graphene sheet and its moire with the substrate are uncovered. The adsorbed graphene layer forms a wave pattern of nanometer wavelength with a corresponding modulation of its electronic properties. This wave pattern is demonstrated in density functional theory calculations to enable the templated adsorption of naphthalene molecules, and in experiment to uniaxially align sandwich-molecular wires composed of Eu and cyclooctatetraene molecules.