• 文献标题:   Charge carrier transport across grain boundaries in graphene
  • 文献类型:   Article
  • 作  者:   MENDEZ JP, ARCA F, RAMOS J, ORTIZ M, ARIZA MP
  • 作者关键词:   graphene, charge carrier transport, grain boundarie, dislocation, landauerbuttiker formalism
  • 出版物名称:   ACTA MATERIALIA
  • ISSN:   1359-6454 EI 1873-2453
  • 通讯作者地址:   Univ Seville
  • 被引频次:   2
  • DOI:   10.1016/j.actamat.2018.05.019
  • 出版年:   2018

▎ 摘  要

We evaluate the charge carrier transmission across asymmetric grain boundaries (GB) in a graphene lattice within the Landauer-Btittiker formalism. We employ a tight-binding model for C-based materials that accounts for lattice strain introduced by topological defects, such as grain boundaries. In particular, we investigate electronic transmission across grain boundaries found to be stable up to high temperatures. Our calculations suggest that the introduction of GBs generally preserves the zero-transport gap property of pristine graphene. However, only some specific asymmetric GBs open a moderate transport gap, which can be as high as approximate to 1.15 eV. We find that the GBs that introduce a transport gap are characterized by the existence of a mismatch along the GB. Indeed, the magnitude of this mismatch appears to be the main structural variable that determines the transport gap size, with greater mismatch resulting in larger transport gaps. Finally, we find that the presence of GBs reduces considerably electron transmission, and less so hole transmission. (C) 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.