• 文献标题:   Vertical current-flow enhancement via fabrication of GaN nanorod p-n junction diode on graphene
  • 文献类型:   Article
  • 作  者:   RYU SR, RAM SDG, LEE SJ, CHO HD, LEE S, KANG TW, KWON S, YANG W, SHIN S, WOO Y
  • 作者关键词:   gan nanorod, uniaxial pn junction nanorod, hydride vapor phase epitaxy, kelvin force probe microscopy, iv characteristic, monolayer graphene
  • 出版物名称:   APPLIED SURFACE SCIENCE
  • ISSN:   0169-4332 EI 1873-5584
  • 通讯作者地址:   Dept Phys
  • 被引频次:   11
  • DOI:   10.1016/j.apsusc.2015.04.076
  • 出版年:   2015

▎ 摘  要

Mg doped GaN nanorods were grown on undoped n-type GaN nanorods uniaxial on monolayer graphene by hydride vapor phase epitaxy (HVPE) method. The monolayer graphene used as the bottom electrode and a substrate as well provides good electrical contact, acts as a current spreading layer, well suitable for the growth of hexagonal GaN nanorod. In addition it has a work function suitable to that of n-GaN. The formed p-n nanorods show a Schottky behavior with a turn on voltage of 3 V. Using graphene as the substrate, the resistance of the nanorod is reduced by 700 times when compared with the case without using graphene as the current spreading layer. The low resistance of graphene acts in parallel with the resistance of the GaN buffer layer, and reduces the resistance drastically. The formed p-n junction in a single GaN nanorod is visualized by Kelvin Force Probe Microscopy (KPFM) to have distinctively contrast p and n regions. The measured contact potential difference of p-and n-region has a difference of 103 mV which well confirms the formed regions are electronically different. Low temperature photoluminescence (PL) spectra give evidence of dopant related acceptor bound emission at 3.2 eV different from 3.4 eV of undoped GaN. The crystalline structure, compositional purity is confirmed by X-ray diffraction (XRD), Transmission and Scanning electron microcopies (SEM), (TEM), Energy dispersive analysis by X-ray (EDAX) and X-ray photoelectron spectroscopy (XPS) as well. (C) 2015 Elsevier B.V. All rights reserved.