▎ 摘 要
Oxygen reduction reaction (ORR) is a very important reaction that occurs at the cathodic side in proton exchange membrane fuel cells (PEMFCs). The high cost associated with frequently used Pt-based electrocatalysts for ORR limits the commercialization of PEMFCs. Through bifunctional and electronic effects, theoretical calculations have proved that alloying Pt with a suitable transition metal is likely to improve ORR mass activity when compared to Pt-alone systems. Herein, we demonstrate the preparation of bimetallic Pt-Fe nanoparticles supported on reduced graphene oxide sheets (RGOs) via a simple surfactant-free chemical reduction method. The present method produces PtFe/RGO catalyst particles with a 3.2 nm diameter without agglomeration. PtFe/RGO showed a noticeable positive half-wave potential (0.503 V vs. Ag/AgCl) compared with a commercial Pt/C catalyst (0.352 V vs. Ag/AgCl) with minimal Pt-loading on a glassy carbon electrode. Further, PtFe/RGO showed a higher ORR mass activity of 4.85 mA/cm(2)-geo compared to the commercial Pt/C (3.60 mA/cm(2)-geo). This work paves the way for designing noble-transition metal alloy electrocatalysts on RGO supports as high-performance electrocatalysts for ORR application.