• 文献标题:   High-Performance Li-Ion Battery Anodes Based on Silicon-Graphene Self-Assemblies
  • 文献类型:   Article, Proceedings Paper
  • 作  者:   KIM N, OH C, KIM J, KIM JS, JEONG ED, BAE JS, HONG TE, LEE JK
  • 作者关键词:  
  • 出版物名称:   JOURNAL OF THE ELECTROCHEMICAL SOCIETY
  • ISSN:   0013-4651 EI 1945-7111
  • 通讯作者地址:   Dong A Univ
  • 被引频次:   24
  • DOI:   10.1149/2.0101701jes
  • 出版年:   2017

▎ 摘  要

A series of Si/graphene sheet/carbon (Si/GS/C) composites was prepared by electrostatic self-assembly between amine-grafted silicon nanoparticles (SiNPs) and graphene oxide (GO). The Si/GS derived from carbonization of Si/GO assemblies showed limited cycling stability owing to loose cohesion between SiNPs and graphene, and increased impedances during cycling. To counteract the cycling instability of Si/GS, an additional carbon-gel coating was applied to the Si/GO assemblies in situ in solution followed by carbonization to yield dense three-dimensional particulate Si/GS/C composite with many internal voids. The obtained Si/GS/C composites showed much better electrochemical performances than the Si/GS owing to enhanced cohesion between the SiNPs and the carbon structures, which reduced the impedance buildup and protected the SiNPs from direct exposure to the electrolyte. A strategy for practical use of a high-capacity Si/GS/C composite was also demonstrated using a hybrid composite prepared by mixing it with commercial graphite. The hybrid composite electrode showed specific and volumetric capacities that were 200% and 12% larger, respectively, than those of graphite, excellent cycling stability, and CEs (>99.7%) exceeding those of graphite. Hence, electrostatic self-assembly of SiNPs and GO followed by in situ carbon coating can produce reliable, high-performance anodes for high-energy LIBs. (C) The Author(s) 2016. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. All rights reserved.