• 文献标题:   Manganese oxide nanoparticles supported nitrogen-doped graphene: a durable alkaline oxygen reduction electrocatalyst
  • 文献类型:   Article
  • 作  者:   SARKAR IJR, PEERA SG, CHETTY R
  • 作者关键词:   alkaline membrane fuel cell, ndoped reduced graphene oxide, nonprecious metal, orr, durability
  • 出版物名称:   JOURNAL OF APPLIED ELECTROCHEMISTRY
  • ISSN:   0021-891X EI 1572-8838
  • 通讯作者地址:   Indian Inst Technol Madras
  • 被引频次:   1
  • DOI:   10.1007/s10800-018-1207-1
  • 出版年:   2018

▎ 摘  要

Manganese oxide-based nitrogen-doped reduced graphene oxide (MnO/N-rGO) electrocatalyst was developed by a simple sol-gel process with aqueous KMnO4 and sucrose by adding nitrogen-doped reduced graphene oxide. The physical characterizations were systematically evaluated by X-ray diffraction, field emission scanning electron microscope, transmission electron microscope, and X-ray photoelectron spectroscopy. The electrochemical and oxygen reduction properties of the electrocatalyst and support were studied by employing cyclic voltammetry and linear sweep voltammetry techniques on a rotating-disk electrode in alkaline (0.1 M KOH) solution and compared with commercial Pt/C catalysts. The synthesized catalyst possesses a high oxygen reduction activity and the rotating ring-disk electrode results illustrate a 3.8 e(-) transfer process. Stability tests performed for 10,000 potential cycles exhibited that the MnO/N-rGO catalyst is more durable than Pt/C catalyst. MnO/N-rGO as cathode catalyst in a single alkaline fuel cell studies gave a peak power density of 44 mW cm(- 2) at 40 A degrees C. Durability by accelerated stress test (AST) in fuel cell mode demonstrated MnO/N-rGO as alternative hybrid cathode catalyst which has excellent stability and durability of 67% more than commercial Pt/C. [GRAPHICS]