▎ 摘 要
An electrode's conductivity, ion diffusion rate, and flexibility are critical factors in determining its performance in a lithium-ion battery. In this study, NiO-carbon fibers were modified with multifunctional graphene sheets, resulting in flexible mats. These mats displayed high conductivities, and the transformation of active NiO to inert Ni-0 was effectively prevented at relatively low annealing temperatures in the presence of graphene. The mats were also highly flexible and contained large gaps for the rapid diffusion of ions, because of the addition of graphene sheets. The flexible NiO graphene-carbon fiber mats achieved a reversible capacity of 750 mA h/g after 350 cycles at a current density of 500 mA/g as the binder-free anodes of lithium-ion batteries. The mats' rate capacities were also higher than those of either the NiO-carbon fibers or the graphene-carbon fibers. This work should provide a new route toward improving the mechanical properties, conductivities, and stabilities of mats using multifunctional graphene.