▎ 摘 要
The non-covalent functionalisation of graphene is an attractive strategy to alter the surface chemistry of graphene without damaging its superior electrical and mechanical properties. Using the facile method of aqueous-phase functionalisation on large-scale CVD-grown graphene, we investigated the formation of different packing densities in self-assembled monolayers (SAMs) of perylene bisimide derivatives and related this to the amount of substrate contamination. We were able to directly observe wet-chemically deposited SAMs in scanning tunnelling microscopy (STM) on transferred CVD graphene and revealed that the densely packed perylene ad-layers adsorb with the conjugated p-system of the core perpendicular to the graphene substrate. This elucidation of the non-covalent functionalisation of graphene has major implications on controlling its surface chemistry and opens new pathways for adaptable functionalisation in ambient conditions and on the large scale.