▎ 摘 要
The thermal reduction of graphene oxide (GO) was performed by a tube furnace at different temperatures, and its structure evolution was investigated in detail. The results showed that the oxygen-containing functional groups on the carbon plane surface of GO gradually decomposed as the temperature increase, and the reduced graphene oxide (rGO) powder was obtained at 800 degrees C. Then, rGO powder was sintered under 30 MPa at 1 800 degrees C using spark plasma sintering (SPS) and hot-pressing (HP) to evaluate its structural stability at high temperatures. The defect densities of rGO were reduced after high-temperature sintering. The edge flatness and sp(2) hybrid carbon plane structure were reconstructed effectively. These results demonstrate that the lamellar structure of rGO maintains the structural integrity during high-temperature sintering without obvious deterioration, which provides experimental and theoretical supports for GO reinforced ceramics.