• 文献标题:   Synthesis of polyaniline/2-dimensional graphene analog MoS2 composites for high-performance supercapacitor
  • 文献类型:   Article
  • 作  者:   HUANG KJ, WANG L, LIU YJ, WANG HB, LIU YM, WANG LL
  • 作者关键词:   polyaniline, molybdenum disulfide, electrode material, supercapacitor
  • 出版物名称:   ELECTROCHIMICA ACTA
  • ISSN:   0013-4686 EI 1873-3859
  • 通讯作者地址:   Xinyang Normal Univ
  • 被引频次:   177
  • DOI:   10.1016/j.electacta.2013.07.168
  • 出版年:   2013

▎ 摘  要

We report a facile strategy to synthesize polyaniline/molybdenum disulfide (PANI/MoS2) nanocomposite by in situ polymerization to achieve excellent electrochemical properties for application as supercapacitor electrodes. MoS2 nanocomposite with graphene-like subunits structure is prepared by a hydrothermal method and serves as an excellent 2D conductive skeleton that supports a highly electrolytic accessible surface area of redox-active PANI and provides a direct path for electrons. The layered nanostructure of PANI/MoS2 composites provides a larger contact surface area for the intercalation/deintercalation of protons into/out of active materials and shortens the path length for electrolyte ion transport. The structure of the composite is characterized by scanning electron microscope, transmission electron microscope, Xray powder diffraction, Fourier transform infrared spectroscopy, and thermogravimetric analysis, and the electrochemical performances of the composites are evaluated by cyclic voltammogram and galvanostatic charge-discharge. The maximum specific capacitance of 575 F g(-1) at 1 A g(-1) is observed at the PANI/MoS2 electrodes. The energy density of 265 W h kg(-1) is obtained at a power density of 18.0 kW kg(-1). In addition, the PANI/MoS2 composite electrode shows excellent long-term cyclic stability (less than 2% decrease in specific capacitance after 500 cycles at a current density of 1 A g(-1)), indicating a positive synergistic effect of MoS2 and PANI for the improvement of electrochemical performance. (C) 2013 Elsevier Ltd. All rights reserved.