▎ 摘 要
Developing low-cost, efficient and stable catalyst for the oxygen reduction reaction is meaningful and necessary for the industrialization of fuel cells. In this work, we report the controllable synthesis of Co3O4 nanospheres uniformly anchored on N-doped reduced graphene oxide (N-rGO) sheets with significant catalytic activity for the oxygen reduction reaction via a simple two-step approach. Results show that there is an interaction between Co3O4 nanospheres and N-rGO after riveting on N-rGO, which is beneficial to the electron transfer between them. The Co3O4 NS/N-rGO hybrid has excellent catalytic activity, comparable to commercial Pt/C catalyst. The transferred electron number of the oxygen reduction reaction on Co3O4 NS/N-rGO is around 3.95. The hybrid has more excellent durability and methanol resistance than commercial Pt/C. The Co3O4 NS/N-rGO catalyst in our work provides a cost-effective the oxygen reduction reaction catalyst alternative to the precious metal Pt in fuel cell. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.