▎ 摘 要
Chemical vapor deposition (CVD) has great potential to produce graphene films at large-scale. However, CVD production of graphene films usually requires a catalytic metal substrate, such as copper. Recently we have developed a new method to grow graphene films directly on crystalline silicon wafers with a thermally grown 300 nm oxide layer, using a seeded-CVD growth approach. The use of methane as the feedstock and optimized graphene seeds has led to enhanced film formation, which SEM, X-ray photo-electron and Raman spectroscopies indicate consist of graphene layers formed by the coalescence of expanding "graphene seeds". The resultant films have regions of single graphene crystallites within them as a result of lateral growth of the seeds. In addition, we have observed that the unilateral conductivity of the graphene films is consistent with the presence of graphene nanoribbons and as such has potential application in device fabrication.