▎ 摘 要
The electronic and optical properties of graphene can be precisely tuned by generating deterministic arrangements of strain features. In this paper, we report the formation of widespread and controlled buck-ling delamination of monolayer graphene deposited on hexagonal boron-nitride promoted by a significant squeezing of the graphene flake and induced by polymeric microactuators. The flexibility of this method offers a promising technique to create arbitrary buckling geometries and arrays of wrinkles which could also be subjected to iterative folding-unfolding cycles. Further development of this method could pave the way to tune the properties of several kinds of other two-dimensional materials, such as transition metal dichalcogenides, by tailoring their surface topography.