• 文献标题:   Even denominator fractional quantum Hall states in higher Landau levels of graphene
  • 文献类型:   Article
  • 作  者:   KIM Y, BALRAM AC, TANIGUCHI T, WATANABE K, JAIN JK, SMETL JH
  • 作者关键词:  
  • 出版物名称:   NATURE PHYSICS
  • ISSN:   1745-2473 EI 1745-2481
  • 通讯作者地址:   Max Planck Inst Solid State Res
  • 被引频次:   22
  • DOI:   10.1038/s41567-018-0355-x
  • 出版年:   2019

▎ 摘  要

An important development in the field of the fractional quantum Hall effect was the proposal that the 5/2 state observed in the Landau level with orbital index n = 1 of two-dimensional electrons in a GaAs quantum well(1) originates from a chiral p-wave paired state of composite fermions that are topological bound states of electrons and quantized vortices. The excitations of this state, which is theoretically described by a 'Pfaffian' wavefunction(2) or its hole partner called the anti-Pfaffian(3,4), are neither fermions nor bosons but Majorana quasiparticles obeying non-Abelian braid statistics(5). This has inspired ideas for fault-tolerant topological quantum computation(6) and has also instigated a search for other states with exotic quasiparticles. Here we report experiments on monolayer graphene that show clear evidence for unexpected even denominator fractional quantum Hall physics in the n = 3 Landau level. We numerically investigate the known candidate states for the even denominator fractional quantum Hall effect, including the Pfaffian, the particle-hole symmetric Pfaffian and the 221-parton states, and conclude that, among these, the 221-parton appears a potentially suitable candidate to describe the experimentally observed state. Like the Pfaffian, this state is believed to harbour quasi-particles with non-Abelian braid statistics(7).