• 文献标题:   Micro-photoluminescence of Carbon Dots Deposited on Twisted Double-Layer Graphene Grown by Chemical Vapor Deposition
  • 文献类型:   Article
  • 作  者:   FAGGIO G, GRILLO R, FOTI A, AGNELLO S, MESSINA F, MESSINA G
  • 作者关键词:   carbon dot, twisted bilayer graphene, raman spectroscopy, microphotoluminescence, afm
  • 出版物名称:   ACS APPLIED MATERIALS INTERFACES
  • ISSN:   1944-8244 EI 1944-8252
  • 通讯作者地址:  
  • 被引频次:   3
  • DOI:   10.1021/acsami.0c21853 EA FEB 2021
  • 出版年:   2021

▎ 摘  要

Carbon-based nanomaterials, such as carbon dots (CDs) and graphene (Gr), feature outstanding optical and electronic properties. Hence, their integration in optoelectronic and photonic devices is easier thanks to their low dimensionality and offers the possibility to reach high-quality performances. In this context, the combination of CDs and Gr into new nanocomposite materials CDs/Gr can further improve their optoelectronic properties and eventually create new ones, paving the way for the development of advanced carbon nanotechnology. In this work, we have thoroughly investigated the structural and emission properties of CDs deposited on single-layer and bilayer graphene lying on a SiO2/Si substrate. A systematic Raman analysis points out that bilayer (BL) graphene grown by chemical vapor deposition does not always respect the Bernal (AB) stacking, but it is rather a mixture of twisted bilayer (t-BL) featuring domains with different twist angles. Moreover, in-depth micro-photoluminescence measurements, combined with atomic force microscopy (AFM) morphological analysis, show that CD emission efficiency is strongly depleted by the presence of graphene and in particular is dependent on the number of layers as well as on the twist angle of BL graphene. Finally, we propose a model which explains these results on the basis of photoinduced charge-transfer processes, taking into account the energy levels of the hybrid nanosystem formed by coupling CDs with t-BL/SiO2.