▎ 摘 要
The nanomaterials have received enormous attention in the catalysis applications. Particularly, we have focused on the fabrication of nanocomposite for an electrochemical sensor with improved electrocatalytic performance. Herein, a rapid and sensitive electrochemical detection of nitrite is essential for assessing the risks facing ecosystems in environment. We report a simple and robust ultrasonic-assisted synthetical route via prepared Er2O3 nanoparticles decorated reduced graphene oxide nanocomposite (Er2O3 NPs@RGO) modified electrode for nitrite detection. The composition and morphological formation were characterized by XRD, XPS, FESEM, and HRTEM. The amperometric (i-t) and cyclic voltammetry were exhibits tremendous electrocatalytic capability and superior performance toward nitrite oxidation. A sensitive and reproducible amperometric nitrite sensor was fabricated which able to detect trace concentration as 3.69 nM and excellent sensitivity (24.17 mu A mu M-1 cm(-2)). The method worked well even in cured meat and water samples and the results has indicates the reliability of the method in real-time analysis.