▎ 摘 要
Unlike in ordinary metals, in graphene, phonon structure can be seen in the quasiparticle electronic density of states, because the latter varies on the scale of the phonon energy. In a magnetic field, quantization into Landau levels creates even more significant variations. We calculate the density of states incorporating electron-phonon coupling in this case and find that the coupling has pronounced new effects: shifting and broadening of Landau levels, creation of new peaks, and splitting of any Landau levels falling near one of the new peaks. Comparing our calculations with a recent experiment, we find evidence for a phonon with energy similar to but somewhat greater than the optical E-2g mode and a coupling corresponding to a mass enhancement parameter lambda similar or equal to 0.07. Copyright (C) EPLA, 2011