▎ 摘 要
A facile and rapid approach was used for the fabrication of chemically derived graphene nanosheets based on the reduction of graphite oxide (GO) in tube furnace assembly at different temperatures. The morphologies, microstructures, specific surface areas and other features of GO and graphene nanosheets were characterized. Structure characterization indicates that the platelet thickness of graphene nanosheets obtained at 300 C was 1.62 nm, which corresponds to an approximately 5 layers stacking of the monoatomic graphene nanosheets. Electrochemical performances of the as-prepared graphene nanosheets were performed, the result of which could prove the above observation that graphene nanosheets (5 layers) obtained at 300 C actually displayed the most remarkable electrochemical performances: the first discharge and charge capacities of graphene nanosheets were as high as 2137 mAh/g and 994 mAh/g, respectively, and after 100 cycles graphene nanosheets still possessed a high capacity of 478 mAh/g. (C) 2011 Elsevier B.V. All rights reserved.