▎ 摘 要
Herein, we reported a simple and "green'' method for preparing the ternary photocatalyst Ag-graphene quantum dots (GQDs)-ZnO. In this method, an aqueous solution of GQDs not only acted as a substituent for the organic solvent for preparing the ZnO precursor but was also used as a reducing agent for the in situ synthesis of Ag nanoparticles (NPs). X-ray diffraction analysis and scanning electron microscopy were employed to confirm the effects of the GQD solution as a solvent on the ZnO structure. Transmission electron microscopy confirmed the synthesis of Ag NPs in the GQD solution as well as the formation of close interconnections between them. Furthermore, photocatalytic tests involving the degradation of Rhodamine B showed that the synthesized ternary photocatalyst displayed excellent visible-light photocatalytic activity, which was much higher than that of pure ZnO and binary photocatalysts such as Ag-ZnO and GQDs-ZnO. We believe that this method will lead to the "green'' synthesis of hybrid metal/carbon/semiconductor photocatalysts with higher photocatalytic activities.