• 文献标题:   Molecular Dynamics Simulation on In-Plane Thermal Conductivity of Graphene/Hexagonal Boron Nitride van der Waals Heterostructures
  • 文献类型:   Article, Early Access
  • 作  者:   YANG YZ, MA J, YANG J, ZHANG YY
  • 作者关键词:   thermal conductivity, graphene, hexagonal boron nitride, van der waals heterostructure, phonon transport, molecular dynamic
  • 出版物名称:   ACS APPLIED MATERIALS INTERFACES
  • ISSN:   1944-8244 EI 1944-8252
  • 通讯作者地址:  
  • 被引频次:   1
  • DOI:   10.1021/acsami.2c14871 EA SEP 2022
  • 出版年:   2022

▎ 摘  要

Graphene, hexagonal boron nitride (h-BN), and their heterostructures are promising thermal interface materials due to the outstanding thermal properties of graphene and h-BN. For the heterostructures, extensive work has mainly focused on the thermal transport of two-dimensional (2D) graphene/h-BN (GBN) in-plane heterostructures in which graphene and h-BN are bonded at the interface. In this study, we investigate the thermal conductivity of three-dimensional (3D) GBN van der Waals (vdW) heterostructures by means of nonequilibrium molecular dynamics (NEMD) simulations. Unlike the 2D GBN in-plane heterostructure, the 3D GBN vdW heterostructure consists of three layers where graphene is sandwiched by two h-BN sheets via vdW forces. Various techniques, including hydrogen-functionalization, vacancy defects, tensile strain, interlayer coupling strength, layer numbers of h-BN, size effect, and temperature, are extensively explored to find an effective route for the modulation of the thermal conductivity. It is found that the thermal conductivity of the triple-layer GBN vdW heterostructure is very sensitive to these extrinsic factors. Of these, hydrogen-functionalization is the most effective method. A low hydrogen coverage of 1% in the sandwiched graphene can lead to 55% reduction in the thermal conductivity of the vdW heterostructure. Vacancy defects on graphene exert a more significant effect on the thermal conductivity reduction for the vdW heterostructure than B or N vacancies in the outer h-BN layers. This work reveals the physical mechanism for manipulating the thermal transport along the GBN vdW heterostructures via structural modification and provides a useful guideline for designing novel thermal management devices based on the GBN vdW heterostructures.