▎ 摘 要
Mercury removal from the valuable-product yielding desulfurization is a great challenge to purify the desulfurization byproduct. Here, we establish a carbon nanomaterials-based strategy to improve such adsorption efficiency by integrating S-doped carbon nitride nanotube with large flake size graphene oxide (LGO) to fabricate a porous three-dimensional adsorbent. Theoretical calculations and experimental results indicate that such hierarchical framework could effectively and selectively enhance adsorbing of Hg2+ via both physical approach (electrostatic forces by the tubular shape of S-doped g-C3N4 nanotube) and chemistry route (coordination bonding though S doped/containing sites). Additionally, cell viability is estimated by MTT proliferation tests in this study to reveal the biocompatibility. Finally, the absorbent is further employed in a practical industry level approach in the ammonia desulfurization slurry to prohibit its re-emission and upgrade the desulfurization byproduct. Thus, this system is expected to provide a new insight on the practical construction of nanomaterials for mercury removal and the management of real industrial wastewater.