▎ 摘 要
Premature drug release is a common drawback in stimuli-responsive drug delivery systems (DDS), especially if it depends on internal triggers, which are hard to control, or a single external stimulus, which can only have one function. Thus, many DDS systems have been reported that combined different triggers;, however, limited success has been established in fine-tuning the release process, mainly due to the poor bioavailability and complexity of the reported designs. This paper reports the design of a hybrid microcapsule (h-MC) by a simple layer-by-layer technique comprising polysaccharides (sodium alginate, chitosan, and hyaluronic acid), iron oxide, and graphene oxide (GO). Electrostatic assembly of the oppositely charged polysaccharides and graphene sheets provided a robust structure in which to load drugs through pH control. The polysaccharide component ensured high biocompatibility, bioavailability, and tumor cells targeting. The alternative magnetic field and near infrared laser triggerable Fe3O4@GO component provided for dual high-energy and high-penetration hyperthermia therapy. On demand drug release from h-MC can be achieved by synchronizing these external triggers, making the release highly controllable. The synergistic effect of hyperthermia and chemotherapy was successfully confirmed in vitro and in vivo.