• 文献标题:   RETRACTED: Graphene-SnO2 nanocomposites decorated with quantum tunneling junctions: preparation strategies, microstructures and formation mechanism (Retracted article. See vol. 19, pg. 25223, 2017)
  • 文献类型:   Article, Retracted Publication
  • 作  者:   WANG QX, WU XZ, WANG LJ, CHEN ZW, WANG SL
  • 作者关键词:  
  • 出版物名称:   PHYSICAL CHEMISTRY CHEMICAL PHYSICS
  • ISSN:   1463-9076 EI 1463-9084
  • 通讯作者地址:   Shanghai Tongji Hosp
  • 被引频次:   10
  • DOI:   10.1039/c4cp02615b
  • 出版年:   2014

▎ 摘  要

Tin dioxide (SnO2) and graphene are versatile materials that are vitally important for creating new functional and smart materials. A facile, simple and efficient ultrasonic-assisted hydrothermal synthesis approach has been developed to prepare graphene-SnO2 nanocomposites (GSNCs), including three samples with graphene/Sn weight ratios = 1 : 2 (GSNC-2), 1 : 1 (GSNC-1), and graphene oxide/Sn weight ratio = 1 : 1 (GOSNC-1). Low-magnification electron microscopy analysis indicated that graphene was exfoliated and adorned with SnO2 nanoparticles, which were dispersed uniformly on both the sides of the graphene nanosheets. High-magnification electron microscopy analysis confirmed that the graphene-SnO2 nanocomposites presented network tunneling frameworks, which were decorated with the SnO2 quantum tunneling junctions. The size distribution of SnO2 nanoparticles was estimated to range from 3 to 5.5 nm. Comparing GSNC-2, GSNC-1, and GOSNC-1, GOSNC-1 was found to exhibit a significantly better the homogeneous distribution and a considerably smaller size distribution of SnO2 nanoparticles, which indicated that it was better to use graphene oxide as a supporting material and SnCl4 center dot 5H(2)O as a precursor to synthesize hybrid graphene-SnO2 nanocomposites. Experimental results suggest that the graphene-SnO2 nanocomposites with interesting SnO2 quantum tunneling junctions may be a promising material to facilitate the improvement of the future design of micro/nanodevices.