• 文献标题:   Interfacial self-assembly of ultrathin polydiacetylene/graphene oxide nanocomposites: A new method for synergetic enhancement of surface charge transfer without doping
  • 文献类型:   Article
  • 作  者:   GUSAROVA EA, ZVYAGINA AI, ALEKSANDROV AE, KUZMINA NV, SHABATIN AV, AVERIN AA, TAMEEV AR, KALININA MA
  • 作者关键词:   hybrid material, conductive polymer, graphene oxide, ultrathin film, polydiacetylene, photovoltaic
  • 出版物名称:   COLLOID INTERFACE SCIENCE COMMUNICATIONS
  • ISSN:   2215-0382
  • 通讯作者地址:  
  • 被引频次:   4
  • DOI:   10.1016/j.colcom.2021.100575
  • 出版年:   2022

▎ 摘  要

A new method for interfacial self-assembly of graphene oxide (GO) and 10,12-pentacosadiynoic acid into nanometer-thick light-absorbing films exhibiting synergetic enhancement of conductive properties is developed. The blue form of polydiacetylene (PDA) nanopatches with a thickness of 5-10 nm is stabilized through the interactions between GO and PDA. The hole-transferring polymer decreases contact resistance in the GO sublayer through "healing" the gaps between the GO nanosheets. The separation of electron-hole pairs at the PDA/GO interface under applied electric field leads to a doping-free enhancement of the in-plane surface conductivity by 6 orders of magnitude up to 46.4 S.cm(-1) with respect to those of individual components. These PDA/GO nano-composites were applied as ultrathin diodes/photodiodes in a solar cell by creating a PDA/C-60 heterojunction and a light-induced cross-layer charge transfer. The method can be adapted to a variety of polymerizable light-absorbing surfactants for fabricating GO-based nanohybrids for photoelectronics.