• 文献标题:   Characteristics and Mechanical Properties of Graphene Nanoplatelets-Reinforced Epoxy Nanocomposites: Comparison of Different Dispersal Mechanisms
  • 文献类型:   Article
  • 作  者:   SHEN MY, LIAO WY, WANG TQ, LAI WM
  • 作者关键词:   graphene nanoplatelet, graphene nanoplatelet, epoxy nanocomposite, mechanical propertie, planetary centrifugal mixing, threeroll milling, traditional dispersal
  • 出版物名称:   SUSTAINABILITY
  • ISSN:  
  • 通讯作者地址:  
  • 被引频次:   8
  • DOI:   10.3390/su13041788
  • 出版年:   2021

▎ 摘  要

The preparation of polymer-based nanocomposites requires considerable time (i.e., the dispersal of nanomaterials into a polymer matrix), resulting in difficulties associated with their commercial use. In this study, two simple and efficient dispersion methods, namely planetary centrifugal mixing and three-roll milling, were used to enable the graphene nanoplatelets to disperse uniformly throughout an epoxy solution (i.e., 0, 0.1, 0.25, 0.5, and 1.0 wt.%) and allow the subsequent preparation of graphene nanoplatelets/epoxy nanocomposites. Measurements of mechanical properties of these nanocomposites, including ultimate tensile strength, flexural strength, and flexural modulus, were used to evaluate these dispersal methods. Dispersing graphene nanoplatelets into the epoxy resin by planetary centrifugal mixing not only required a shorter process time but also resulted in a more uniform dispersion of graphene nanoplatelets than that by three-roll milling. In addition, compared with traditional dispersal methods, planetary centrifugal mixing was a more efficient dispersal method for the preparation of epoxy-based nanocomposites.