▎ 摘 要
The photochemical-reduction methods exhibit many interesting applications in metal and metal oxide nanoparticles with promising properties such as easy-to-handle, easy-to-inkjet and cost-effective. Using the soluble graphene oxide (GO) as a precursor, graphene production can be achieved via photochemical reduction, paving the way for manufacturing graphene products in controllable microscopic patterns. In this work, I used a photochemical method to obtain reduced graphene oxide (rGO), assisted by strong reducing alpha-aminoalkyl (alpha-A*) radicals generated by photoinitiator Irgacure-907. The extent of oxygen reduction can be continually controlled by manipulating light dosage and characterized by quantitative measurements of structure, morphology, chemical composition and electrical conductivity. The high quality of obtained rGO makes this photochemical-reduction based technology ideal for inkjet printing microstructures of graphene, thus achieving desirable conductivity, other physical and chemical properties associated.