▎ 摘 要
The evaporation of silicon atoms during the epitaxial growth of graphene on the singular carbon and silicon faces of silicon carbide SiC was modeled by the semiempirical AM1 and PM3 methods. The analysis was performed for evaporation of atoms both from the open surface of SiC and through the surface of the formed graphene monolayers. The total activation barrier of the evaporation of the silicon atoms, their passage from the graphene cell, and further evaporation from graphene was shown to be lower than the barrier to evaporation of the silicon atom on a free surface of SiC. Passage through graphene is thus not the limiting stage of the process, but contributes significantly to the effective evaporation time.