▎ 摘 要
We report here design of a graphene oxide-based electrochemical biosensor for detection of platelet-derived microparticles (PMPs), a major risk factor for arterial pro-thrombotic pathologies like acute myocardial infarction and stroke. Electrodes were fabricated with immobilized layers of graphene oxide and a specific antibody targeted against active conformation of integrin alpha(IIb)beta(3) on PMP surface. Results showed progressive rise in impedance in Nyquist plots with increasing number of PMPs in analyte. The sensor was highly specific for PMPs and did not identify microparticles originating from other cells. Blood obtained from patients diagnosed with acute myocardial infarction exhibited significantly higher values of impedance, consistent with larger number of circulating PMPs in these patients, as compared to samples from healthy individuals, thus validating biosensor as a specific, sensitive, label-free and cost-effective tool for rapid point-of-care detection of PMPs at bedside. Our biosensor is most ideal for mass population screening programs at periphery-level healthcare units with limited resources. It is aimed at early detection of individuals having higher imminent cardiovascular risk, as well as for routine analysis, which in turn would contribute to better management and survival of screened 'high-risk' subjects. (C) 2014 Elsevier B.V. All rights reserved.