▎ 摘 要
The graphene/carbon nanotube hybrid was designed and implemented by a deoxygenation process for direct electron transfer of glucose oxidase and glucose biosensor. The procedure was analyzed by transmission electron microscopy, X-ray photoelectron spectroscopy, and Raman spectra, etc. The strategy of structurally engineering one-dimensional carbon nanotube (CNT) and two-dimensional graphene oxide (GO) presented three benefits: (a) a deoxygenation process between GO and acid-CNT was introduced under strongly alkaline condition; (b) GO prevented the irreversible integration of CNT; and (c) CNT hindered the restacking of GO. The RGO interacted with CNT through the van der Waals forces and pi-pi stacking interaction. The three-dimensional hybrid not only had a high surface area, but also exhibited a good electronic conductivity. A direct electrochemistry of glucose oxidase was obtained on the nanohybrid modified electrode which showed good response for glucose sensing. This study would provide a facile and green method for the preparation of nanohybrid for a wide range of applications including biosensing, super capacitor, and transparent electrode.