• 文献标题:   Atomic-Scale Mott-Schottky Heterojunctions of Boron Nitride Monolayer and Graphene as Metal-Free Photocatalysts for Artificial Photosynthesis
  • 文献类型:   Article
  • 作  者:   ZHANG KX, SU H, WANG HH, ZHANG JJ, ZHAO SY, LEI WW, WEI X, LI XH, CHEN JS
  • 作者关键词:   boron nitride, graphene, mottschottky heterojunction, photocatalyst
  • 出版物名称:   ADVANCED SCIENCE
  • ISSN:   2198-3844
  • 通讯作者地址:   Shanghai Jiao Tong Univ
  • 被引频次:   9
  • DOI:   10.1002/advs.201800062
  • 出版年:   2018

▎ 摘  要

Heterojunction photocatalysts at present are still suffering from the low charge separation/transfer efficiency due to the poor charge mobility of semiconductor-based photocatalysts. Atomic-scale heterojunction-type photocatalysts are regarded as a promising and effective strategy to overcome the drawbacks of traditional photocatalysts for higher photoenergy conversion efficiencies. Herein, an atomic-scale heterojunction composed of a boron nitride monolayer and graphene (h-BN-C/G) is constructed to significantly shorten the charge transfer path to promote the activation of molecular oxygen for artificial photosynthesis (exemplified with oxidative coupling of amines to imines). As the thinnest heterojunction, h-BN-C/G gives the highest conversion, which is eightfold higher than that of the mechanical mixture of graphene and boron nitride monolayers. h-BN-C/G exhibits a high turnover frequency value (4.0 mmol benzylamine g(-1) h(-1)), which is 2.5-fold higher than that of the benchmark metal-free photocatalyst in the literature under even critical conditions.