▎ 摘 要
A solution method was developed to synthesize reduced graphene oxide (RGO) - red phosphorous (RP) composites. The uniform distribution of RP particles into three-dimensional conductive RGO network was obtained. Due to both improved electronic structure and mechanical properties, the hybrids delivered a high lithium storage capacity with superior rate performance. For the first time, the electronic structure, as revealed by phosphorous (P) L-edge and lithium (Li) K-edge X-ray absorption near-edge structure (XANES), provides spectroscopic evidence to identify the lithiated products and solid electrolyte interphase. Charge distribution in between RP and RGO was also found by XANES, facilitating the anchoring of active RP into RGO surface.