• 文献标题:   Excess energy and deformation along free edges of graphene nanoribbons
  • 文献类型:   Article
  • 作  者:   LU Q, HUANG R
  • 作者关键词:  
  • 出版物名称:   PHYSICAL REVIEW B
  • ISSN:   1098-0121
  • 通讯作者地址:   Univ Texas Austin
  • 被引频次:   60
  • DOI:   10.1103/PhysRevB.81.155410
  • 出版年:   2010

▎ 摘  要

Change in the bonding environment at the free edges of graphene monolayer leads to excess edge energy and edge force, depending on the edge morphology (zigzag or armchair). By using a reactive empirical bond-order potential and atomistic simulations, we show that the excess edge energy in free-standing graphene nanoribbons can be partially relaxed by both in-plane and out-of-plane deformation. The excess edge energy and edge force are calculated for graphene nanoribbons with parallel zigzag or armchair edges. Depending on the longitudinal constraint, the compressive edge force leads to either in-plane elongation of the ribbon or out-of-plane buckling deformation. In the former case, the longitudinal strain is inversely proportional to the ribbon width. In the latter case, energy minimization predicts an intrinsic wavelength for edge buckling to be 6.2 nm along the zigzag edge and 8.0 nm along the armchair edge. For graphene nanoribbons of width less than the intrinsic wavelength, interaction between the two free edges becomes significant, leading to antiphase correlation of the buckling waves.