• 文献标题:   Band gap engineering for graphene by using Na+ ions
  • 文献类型:   Article
  • 作  者:   SUNG SJ, LEE PR, KIM JG, RYU MT, PARK HM, CHUNG JW
  • 作者关键词:  
  • 出版物名称:   APPLIED PHYSICS LETTERS
  • ISSN:   0003-6951 EI 1077-3118
  • 通讯作者地址:   Pohang Univ Sci Technol
  • 被引频次:   8
  • DOI:   10.1063/1.4893993
  • 出版年:   2014

▎ 摘  要

Despite the noble electronic properties of graphene, its industrial application has been hindered mainly by the absence of a stable means of producing a band gap at the Dirac point (DP). We report a new route to open a band gap (E-g) at DP in a controlled way by depositing positively charged Na+ ions on single layer graphene formed on 6H-SiC(0001) surface. The doping of low energy Na+ ions is found to deplete the pi* band of graphene above the DP, and simultaneously shift the DP downward away from Fermi energy indicating the opening of E-g. The band gap increases with increasing Na+ coverage with a maximum E-g >= 0: 70 eV. Our core-level data, C 1s, Na 2p, and Si 2p, consistently suggest that Na+ ions do not intercalate through graphene, but produce a significant charge asymmetry among the carbon atoms of graphene to cause the opening of a band gap. We thus provide a reliable way of producing and tuning the band gap of graphene by using Na+ ions, which may play a vital role in utilizing graphene in future nano-electronic devices. (C) 2014 AIP Publishing LLC.