▎ 摘 要
Kinks near the Fermi level observed in angle-resolved photoemission spectroscopy (ARPES) have been widely accepted to represent electronic coupling to collective excitations, but kinks at higher energies have eluded a unified description. We identify the mechanism leading to such kink features by means of ARPES and tight-binding band calculations on sigma bands of graphene, where anomalous kinks at energies as high as similar to 4 eV were reported recently [Phys. Rev. Lett. 111, 216806 (2013)]. We found that two s bands show a strong intensity modulation with abruptly vanishing intensity near the kink features, which is due to sublattice interference. The interference induced local singularity in the matrix element is a critical factor that gives rise to apparent kink features, as confirmed by our spectral simulations without involving any coupling to collective excitations.