▎ 摘 要
In consideration of the urgent need to determine polychlorinated biphenyls (PCBs) in the environment, a label-free and highly selective electrochemical aptasensor was constructed for determining PCBs based on nickel hexacyanoferrate nanoparticles (NiHCF NPs)/reduced graphene oxides (rGO) hybrids. NiHCF NPs/rGO hybrids with small size of about 5 nm NiHCF NPs were synthesized for the first time by in situ co-deposition of NiHCF NPs on rGO surface. In the hybrids, rGO with large area and good conductivity can supply more space for loading NiHCF NPs and improve the conductivity of the hybrids. NiHCF NPs that can be used to be act as a signal probe exhibit a couple of well-defined peaks with highly reversible redox ability and good stability. Here, PCB77 as a model molecule, the anti-PCB77 aptamer was anchored on the NiHCF NPs/rGO hybrids by covalent bonding reaction. The design aptasensor for detecting PCB77 exhibits a favorable linear response from 1.0 to 100.0 ng/L with a low detection limit of 0.22 ng/L. Meanwhile, it displays good selectivity for PCB77 detection due to the specificity and high affinity of aptamer to PCB77. Additionally, the application of the aptasensor was evaluated in real environmental samples.