• 文献标题:   Graphene oxide/polypyrrole nanocomposites: one-step electrochemical doping, coating and synergistic effect for energy storage
  • 文献类型:   Article
  • 作  者:   ZHU CZ, ZHAI JF, WEN D, DONG SJ
  • 作者关键词:  
  • 出版物名称:   JOURNAL OF MATERIALS CHEMISTRY
  • ISSN:   0959-9428 EI 1364-5501
  • 通讯作者地址:   Chinese Acad Sci
  • 被引频次:   188
  • DOI:   10.1039/c2jm16699b
  • 出版年:   2012

▎ 摘  要

We introduce a facile method for the construction of graphene oxide/polypyrrole (GO/PPy) nanocomposites via one-step coelectrodeposition. In this process, the relatively large anionic GO serves as a weak electrolyte and is entrapped in the PPy nanocomposites during the electropolymerization of pyrrole, and also acts as an effective charge-balancing dopant within the PPy film. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) results demonstrate that the GO/PPy nanocomposites are successfully synthesized. The obtained GO/PPy nanocomposites exhibit good electrochemical properties and cycling performance, indicating a synergistic effect of PPy and GO. Taking its higher capacitance, lower cost and shorter processing time into consideration, GO may be a good choice for the fabrication of electrochemical supercapacitors based on conducting polymer nanocomposites. It should be noted that this coelectrodeposition is also applicable for the graphene oxide/poly[3,4-ethylenedioxythiophene] (GO/PEDOT) nanocomposites. Moreover, this facile and effective approach for the synthesis of GO/conducting polymer nanocomposites further extends the application of GO and should be very promising for the fabrication of inexpensive, high-performance electrochemical supercapacitors.