▎ 摘 要
Density functional theory (DFT) level calculations were performed to study the interaction of hydrogenated graphene (CH) monolayer towards methane (CH4) gas molecules. The structural, electronic and gas sensing properties of pure, defected and light metal-doped CH monolayer were investigated. For the pristine CH, the estimated binding energy of CH4 fell short of the desired physisorption range and limit its gas sensing application at ambient conditions. However, upon crafting defects on pure CH layer by introducing hydrogen vacancies, a sharp increase in adsorption energies were observed when the CH4 molecules approached the defected sites of CH. Further, the effect of metal doping was studied by uniformly distributing light metal adatoms on CH monolayer which significantly enhanced the CH4 adsorption. To have better accuracy in calculating adsorption energies, we have incorporated van der Waals type corrections to our calculations for these weakly interacting systems. (C) 2015 Elsevier B.V. All rights reserved.